
Verify the abuse email address of a
domain in Python

Posted on June 28, 2021

In what follows, we’ll develop a small Python program based on WhoisXML API's email verification

package, python-email-verifier that returns the valid and working abuse e-mail of an Internet

domain if it exists.

Assume that you have received an illicit e-mail from a given domain. This may well happen to you

as a user, but it is even more vital if you are actually operating a web or mail server and the

received emails affect your users. Certainly, you will want to complain to the domain owner (who

may not even be aware of the unwanted activity, so your complaint can be very helpful).

The regular way of such a notification is to send an email to the standard address

abuse@domain.tld. According to RFC2142,

"For well-known names that are not related to specific protocols, only the organization's top-level

domain name is required to be valid. For example, if an Internet service provider's domain name is

COMPANY.COM, then the <ABUSE@COMPANY.COM> address must be valid and supported,

even though the customers whose activity generates complaints use hosts with more specific

domain names like SHELL1.COMPANY.COM. Note, however, that it is valid and encouraged to

support mailbox names for sub-domains, as appropriate. Mailbox names must be recognized

independent of character case."

1 Whois API, Inc. | www.whoisxmlapi.com

https://github.com/whois-api-llc/python-email-verifier
https://datatracker.ietf.org/doc/html/rfc2142
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Clearly, for the domain domain.tld, the e-mail address abuse@domain.tld has to exist and be able

to receive emails. Moreover, if the correspondence comes from a subdomain, like

badguy@subdomain.domain.tld, then the standard address abuse@subdomain.domain.tld may

exist and might be more important for the case. (Take, for instance, a university with multiple

faculties. Frequently the faculties have a subdomain under the University's domain and they use it

for correspondence.) Hence, a good strategy would be to start with the lowest-level domain and

proceed to the higher level if the abuse address does not exist.

Let us proceed to the implementation, which requires lower intermediate Python skills. We begin

with installing two packages with Python's package manager, pip:

pip install tld email-verifier

The first one, tld, is able to get the top-level domain (TLD) name from a domain name. We need

this because of second or lower-level domains in certain country-code TLDs that act as top-level

domains. For instance, when dealing with abuse@department.company.co.uk, we don't want to

check abuse@co.uk.

The email-verifier is the aforementioned package by WhoisXML API. It is able to validate an email

address against several aspects. In particular, we want to know whether the domain of the

checked e-mail address resolves in the DNS and whether the address itself can receive messages

on SMTP. (We could also check which are the corresponding mail servers, whether the mail

address belongs to a free email provider, or whether it is a disposable e-mail, but these aspects

are not relevant in our case.)

The email-verifier package uses the Email verification API in the background, so to use it we need

an API key. Visit the API's page to register for 1,000 queries a month for free, or for more queries

at a reasonable price. Having registered, you will receive an API key that will be needed to get our

program working.

Armed with all the necessary ingredients, let us just jump directly to the code of our little program,

get_abuse_email.py:

2 Whois API, Inc. | www.whoisxmlapi.com

https://emailverification.whoisxmlapi.com/blog/what-is-email-verification-or-validation-and-how-does-it-work
https://emailverification.whoisxmlapi.com/blog/what-is-email-verification-or-validation-and-how-does-it-work
https://emailverification.whoisxmlapi.com/
https://emailverification.whoisxmlapi.com/api/pricing
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

#!/usr/bin/env python3

import sys

from tld import get_tld

from emailverifier import Client

from emailverifier import exceptions

API_KEY = 'YOUR_API_KEY'

client = Client(API_KEY)

domain = sys.argv[1].strip().split('@')[-1]

tld_level = len(get_tld(domain, fix_protocol=True).split("."))

domain_elements = domain.split('.')

found = 1

for level in range(0, len(domain_elements) - tld_level):

 this_level_address = "abuse@" + "".join(

[c + "." for c in domain_elements[level:]]).strip(".")

 verification = client.get(this_level_address)

 if verification.dns_check and verification.smtp_check:

print(this_level_address)

found = 0

break

3 Whois API, Inc. | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

sys.exit(found)

The API_KEY variable should hold your actual API key, so to make it work, replace the string

"YOUR_API_KEY" with it. Let's see how it works.

The variable domain holds the domain name, the program accepts domain names as well as

e-mail addresses as a positional argument. In the latter case, we get rid of the account name

and the "@" character.

TLD level determines the level of the "TLD", for instance, it will be 1 for "something.com" and

2 for "something.co.uk"

domain_elements is a list of the parts of the domain name, e.g. ['something','com']

found is the return value of the program for possible use in e.g. a shell script. It will be set to

0 if we find a valid address.

In the main loop, we go through the possible email addresses, e.g. in case of

badguys.evildomain.co.uk we will try abuse@badguys.evildomain.co.uk and

abuse@evildomain.co.uk. If the former works, it is more specific, whereas the second one

should work if the RFC is respected.

The "verification" variable holds an object which stores the result of the actual address

validation.

If the domain name in the mail address resolves in DNS and it does accept emails via SMTP

(i.e. verification.dns_check and verification.smtp_check is True) we are done, we report the

address, set the return code to 0 and break the loop.

If no valid abuse address is found, the program will not return anything and will terminate

with the return code 1.

4 Whois API, Inc. | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Let's see how it works. The examples will be in bash or zsh, and the "$" indicates the input prompt

Checking a proper mail address:

$./get_abuse_email.py support@whoisxmlapi.com

abuse@whoisxmlapi.com

$ echo $?

0

or a domain:

$./get_abuse_email.py drs.whoisxmlapi.com

abuse@whoisxmlapi.com

$ echo $?

0

(This subdomain does not have a specific abuse address as it is not used for mailing.) And finally,

a domain from the spam folder of the author, from which a definitely unwanted mail had been

received:

$./get_abuse_email.py dinaf.gob.hn

$ echo $?

1

It appears that they do not only send unwanted mails, but also violate the RFC with respect to the

abuse email address. Is there a good reason for accepting mail from them?

In conclusion, we have implemented a small Python program to get the abuse email address for a

domain or an e-mail address. It can be used interactively or, for instance, as a part of an

automated abuse sending system. It will also detect, and indicate by the return code, if the domain

violates RFC2142 by not providing a working abuse address. Unfortunately, the implicit violations

of this RFC are not so easy to detect. By "implicit violations' ' we mean the ignoring of the mails

5 Whois API, Inc. | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

sent to the address, or the sending of automated replies with links to web forms for abuse

reporting - a way of ignoring the RFC followed even by some big providers nowadays.

Nevertheless, abuse complaints can help a lot in running a domain responsively, and the present

utility can be helpful when sending them.

6 Whois API, Inc. | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

